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Quasiradiation solution to the compound integrable model
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~Received 21 April 2000; revised manuscript received 18 October 2000; published 23 April 2001!

We introduce compound integrable models composed of different systems of nonlinear equations describing
evolution of fields and matter in different space and time intervals. As an example, we investigate the inte-
grable compound model, which includes the modified nonlinear Schro¨dinger equation describing propagation
of ultrashort pulses in an optical fiber and system of equations describing the two-wave mixing in a resonant
medium with the two-photon induced Kerr-type nonlinearity. Using the matrix Riemann-Hilbert factorization
approach for nonlinear evolution equations integrable in the sense of the the inverse scattering method, we
study generation of ultrashort pulses in this model. We find a solution of a spectral problem on the semi-infinite
interval and solve the compound model for simple but nontrivial boundary conditions for the resonant medium.
We show that an asymptotic solution for light pulse propagating in the fiber is described by the quasiradiation
solution to the modified nonlinear Schro¨dinger equation.
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I. INTRODUCTION

The study of the fundamental dynamical processes a
ciated with the propagation of high-power ultrashort puls
in optical fibers is of paramount importance: the nonline
soliton~ic!, or near-soliton~ic!, operating mode~s! in such
systems are very promising; in particular, very high d
transmission rates, high noise immunity, and the accessib
of new frequency bands@1#. The classical, mathematica
model for nonlinear pulse propagation in the picoseco
time scale in the anomalous dispersion regime in an iso
pic, homogeneous, lossless, nonamplifying, polarizati
preserving single-mode optical fiber is the nonlinear Sch¨-
dinger equation~NLSE! @1#; however, in the subpicosecond
femtosecond time scale, experiments and theories on
propagation of high-power ultrashort pulses in long mon
mode optical fibers have shown that the NLSE is no lon
valid and that additional nonlinear terms~dispersive and dis-
sipative! and higher-order linear dispersion should be tak
into account@1#. In this case, subpicosecond-femtoseco
pulse propagation is described~in dimensionless and norma
ized form! by the following nonlinear evolution equatio
~MNLSE!,

i ]ju1 1
2 ]t

2u1uuu2u1 is]t~ uuu2u!5R, ~1.1!

whereu is the slowly varying amplitude of the complex fie
envelope,j is the propagation distance along the fiber leng
t is the time measured in a frame of reference moving w
the pulse at the group velocity~the retarded frame!, s(.0)
governs the effects due to the intensity dependence of
group velocity~self steepening!. It has been shown recentl
@1# that the MNLSE utilizing the notion of slowly varying
envelope is still valid up to 3–5 periods of field oscillatio
within the envelope. TermR in the right-hand side of Eq
~1.1! may include the terms that governs, for instance,
soliton self-frequency shift effect, the Raman gain, the intr
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sic fiber loss, and the effects of resonantn-photon interaction
of auxiliary fields with the ‘‘main’’ fieldu @1#. In the most
theoretical studies, such terms are treated as the perturba
having a small influence on evolution of the main field a
contribution of these terms are usually investigated anal
cally by using the perturbation theory. Such an approac
mainly used for the study of change of the form and para
eters of propagating stable pulse having initially the form
soliton due to these perturbations. However, for a stro
enough influence of the terms composingR, the perturbation
approaches are not applicable. Besides, interaction with
auxiliary fields may yield the generation of the addition
ultrashort pulses and crucially change asymptotic behavio
the main field.

The versions of the inverse scattering method had b
developed only for one space and time interval for me
with homogeneous nonlinear and dispersive properties@2#.
However, being applied in the nonlinear optics, this meth
can be generalized to the case of interaction of fields w
matter composed of the different nonlinear media situated
the different space intervals. From another side, interac
of the fields with the same media may be different in t
different time intervals. Consider, e.g., a two-level optic
medium permitted as one-photon and two-photon transitio
Let a light field interact with such a medium under the co
dition of one-photon resonance during some time interv
and then a couple of fields being injected in the same me
interact with the same transition under the condition of
two-photon resonance during the next time interval.

In practice, optical fiber is used as a part of a comp
experimental optical setup that includes different nonlin
and linear auxiliary media as well. Interaction of fields
these auxiliary media may be used for the generation of
ultrashort pulses, amplification, selection of pulses, and
on. Then these pulses being injected in the fiber are used
information transfer and others aims. In this case, in
right-hand side of Eq.~1.1!, R may include interaction of the
main field u with auxiliary fields and others effects in th
space intervals out of the fiber. Therefore, interaction p
©2001 The American Physical Society12-1
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cesses are spatially separated and one process affect
other process occurring in the next medium via the bound
conditions.

The study of such schemes of interaction leads to an
portant class of nonlinear integrable problems that have b
an initial value and also a nontrivial boundary value.
these, the simplest ones are those of an hyperbolic fo
such as the sine-Gordon equation and others of that struc
For these equations, the initial value—the boundary-va
problem is a well-stated problem, and the existence
uniqueness of the solution is well established. These eq
tions are also integrable. Thus, one can also analyze t
problems and study their solution by the use of an inve
scattering transform~ISTM! @2# on a finite or semi-infinite
interval. Such an ISTM requires the solution of a direct a
inverse scattering problem on the corresponding inter
Mentioned works@3–8# have described various formal a
pects of this problem. Some papers@4,5# have dealt with
rather special boundary problems that are impractical to
generalized. As first pointed out in Ref.@3#, and as later
detailed in Ref.@6#, the evolution of the scattering data alon
a boundary where there is boundary data, can strongly d
from what we are familiar with in the infinite interval. Th
ISTM formalism based on the Reimann-Hilbert~RH! prob-
lem associated with the Zakharovet al. @2# linear spectral
problem was used in Ref.@8# for the solution of the stimu-
lated Raman scattering in semi-finite interval. Fokas@9#
showed how the inverse scattering approach could be
ploited to solve linear and nonlinear problems with nontriv
boundary and initial conditions. In this regard, the formu
tion in terms of Lax pairs proved to be invaluable, especia
the realization by Fokas that the two Lax equations, wh
analyzed simultaneously and when supplemented with
analysis of a global relation, enabled solutions to be obtai
by the Riemann-Hilbert or d-bar methods. His approach
valid for a general form of initial-boundary conditions an
can be used for the semiaxis or finite interval problems.

For the compound models describing the interaction
fields and matter in the sequentially placed media with
different nonlinear properties the boundary-condition pro
lem, in common, becomes more complex. In this case,
evolution of fields in one medium determines the bound
conditions for the next medium situated in the neighborho
in the direction of the fields propagation.

Development of analytical methods of solution of com
pound models describing the evolution of ultrashort lig
pulses in the compound medium including different finite
semi-infinite media are of practical interest.

The ultimate goals of this paper are:~i! the introduction of
the integrable ‘‘compound models’’ that can be used for
study of pulse dynamics in a compound optical experime
setup, ~ii ! the construction of two new integrable mode
including one physical example of the compound model, a
~iii ! the study of the peculiarities of light field generation
such compound models for the nontrivial boundary con
tions.

It is known that some waves mixing in medium with th
two-photon induced Kerr-type nonlinearities~resonant me-
dium! may be described by using the integrable mod
05661
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@10,11#. Here we find that under a set of approximations,
Maxwell equations are reduced to a couple of equations
are formally equivalent to a system of the second-harmo
generation with additional cubic terms describing the non
ear Stark effects. The Lax representation for this integra
model is derived here. Then we construct the new integra
system of equations that is compound from the one ab
and the MNLSE describing evolution in the different spa
intervals.

This compound model describes the following physic
situation. Let the compound medium be composed of a re
nant medium situated in the space interval@z150,z2# and
optical fibers~Kerr medium! situated in the semi-infinite in-
terval @z2 ,`#. Initially, the main field is absent and the au
iliary fields are constant in time and space and nonzero in
resonant medium. Then the main field is generated fr
noise due to parametric interaction with the auxiliary field
We show that for the long enough effective length of t
resonant medium asymptotic solution to the compou
model for the main field envelope is described by the q
siradiation solution of the MNLSE.

The approach for solution of the initial-boundary proble
used here differs from that of Ref.@9#. This approach is more
convenient in our opinion for the description of fields d
namics in the compound model chosen below for particu
initial-boundary conditions.

The paper is organized as follows. In Sec. II, we descr
a common structure of a compound model and the pecul
ties of evolution of scattering data associated with suc
model. Section III is devoted to the derivation of the com
pound model out of the physical onset. In Sec. IV the inve
scattering problem is applied to an integrable version of
compound model as the matrix oscillatory Riemann-Hilb
~RH! factorization problem. In Sec. V we show that the qu
siradiation solution to the MNLSE that governs the ultrash
pulse evolution in optical fiber can be a corollary of th
simple but nontrivial initial-boundary conditions for an au
iliary field.

II. COMPOUND INTEGRABLE MODELS

A. A common model

Here we describe structure of a common integra
model, which is compounded fromN3M integrable models.
Some of them may coincide. Assume that the compou
model has the following Lax representation:

]

]t
c~t,z;l!5(

j 51

M

b j , j 11~t!L j~t,z;l!c~t,z;l![Lc,

~2.1!

]

]z
c~t,z;l!5(

i 51

N

a i ,i 11~z!Ai~t,z;l!c~t,z;l![Ac;

~2.2!

b j , j 11~t!5@u~t2t j !u~2t1t j 11!#b j̃~t!, t j 11.t j ;

a i ,i 11~z!5@u~z2zi !u~2z1zi 11!#a ĩ~z!, zi 11.zi ,
2-2
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where u(z) is the step function:u(z)50, z<0; u(z)51,
z.0. b ĩ(t)Þ0, a ĩ(z)Þ0 are the finite functions
a i ,i 11(z)/a ĩ(z), b i ,i 11(t)/b ĩ(t) are the projectors, i.e.
a i ,i 11

2 (z)/a ĩ
2(z)5a i ,i 11(z)/a ĩ(z) and so on.

The compatibility condition of linear systems~2.1! and
~2.2! is

]

]z (
j 51

M

b j , j 11~t!L j2
]

]t (
i 51

N

a i ,i 11~z!Ai

1F (
j 51

M

b j , j 11~t!L j ,(
i 51

N

a i ,i 11~z!Ai G50. ~2.3!

Multiplying ~2.3! by a i ,i 11b j , j 11ã i
21b̃ j

21 we derive

b̃ j~t!
]

]z
L j2a ĩ~z!

]

]t
Ai1@b̃ j~t!L j ,a ĩ~z!Ai #50;

zP@zi ,zi 11#, tP@t j ,t j 11#. ~2.4!

Consequently, an evolution in the space-time rectan
@zi ,zi 11#,@t j ,t j 11# is described by the evolution equation
associated with the Lax representation:]tc5b̃ jL jc, ]zc

5ã iAic.
The ISTM technique for spectral problem~2.1! for more

than one interval@t j ,t j 11#, b j , j 11(t)Þ0 does not exist, as
it is known for us. Below we will study a compound mod
associated with the Lax pair~2.1, 2.2! for only one semi-
infinite interval @t150,t25`), b1,2Þ0. Note that a more
common case of the compound model may have the phys
application.

1. z-dependence of the scattering data

Consider a case of one interval@t150,t2), t2→` andN
intervals @zi ,zi 11#, a i ,i 11Þ0. Find z dependence of the
scattering data for the simple ‘‘boundary’’ valueL1(t,0;l)
5const, i.e., for constant ‘‘potential.’’ Let two solutionsc,f
to linear system~2.1! have the following values att50,̀ :

c~0,z;l!5F0~l!, lim
t2→`

c~t2 ,z;l!5F1~l!,

F1~l!5e2 is3n0F0~l!eis3n0, ~2.5!

wheren0 is an arbitrary real constant,s35diag(1,21) is the
Pauli matrix. For an example of a compound model cons
ered in the present paper we haveF05I . These solutions are
related by the matrixT(z;l)

c~t,z;l!5f~t,z;l!T~z;l!. ~2.6!

Substituting Eq.~2.6! into Eq. ~2.1! we find

]

]z
T~z;l!5Ã1T~z;l!2T~z;l!Ã, ~2.7!

here
05661
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Ã15F1
21~l!A~t2 ,z;l!F1~l!,

Ã5F0
21~l!A~0,z;l!F0~l!

.

Formal solution to Eq.~2.7! is

Ti 11~z;l!5exp@B~t2 ,z!#T1~0,l!exp@2B~0,z!#

5exp@Bi~t2 ,z!#Ti~zi ,l!exp@2Bi~0,z!#

5exp@Bi~t2 ,z!#, . . . ,exp@B1~t2 ,z!#T1~z1 ;l!

3exp@2B1~0,z!#, . . . ,exp@2Bi~0,z!#, ~2.8!

where we have introduced the functions

B~y,z!5E
0

z

E21~y;l!(
i 51

N

a i~z!Ai~y,z;l!E~y;l!,

Bi~y,z!5E
zi

z

E21~y;l!Ai~y,z;l!E~y;l!, zi,z<zi 11 .

From Eq. ~2.8! it follows that the dependenceT on z
within the interval@zi ,zi 11# is determined by Eq.~2.7! with
the boundary-valueT(zi ,l).

For 232 matrices Ai ,L j such that (Ai)12(t2 ,z;l)
5(Ai)21(t2 ,z;l)50, for t2→` thez dependence of matrix
T(z;l) is governed by the equation

]

]z
T1,k~z;l!52T1,k~z;l!Ãk~0,z;l!, ~2.9!

where

T1,k5 lim
t2→`

expF2 is3E
0

z

(
i 51

k

a i ,i 11~s!

3~Ãi !11~t2 ,s;l!dsGT1,k ,

Ãk~0,z;l!5F0
21~l!Ak~0,z;l!F0~l!

.

Formal solution to Eq.~2.9! is

T1,N5T1,2T2,3, . . . ,TN21,N ,Ti ,i 11~z;l!

5expF E
zi

zi 11
a i ,i 11~s!Ãi~0,s;l!dsG . ~2.10!

From Eq.~2.10!, it follows that the change of the matrixTk
within the interval@zk ,zk11# is governed by Eq.~2.9! with
the boundary-valueT1,k21 , k.2.

III. PHYSICAL ONSET OF THE COMPOUND MODEL

Here we derive an example of the compound model h
ing application in fiber optics. The model includes th
MNLSE model and the new integrable one describing
2-3
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wave mixing in the resonant medium. Therefore, we fi
derive this new model separately and then derive the c
pound model. The next subsection of this section is devo
to the physical onset of the new model of resonant inter
tion.

A. The three-wave mixing in a resonant medium

Let us consider the three-wave mixing in the medium p
sessing a resonant transition. Using a set of physical assu
tions, we derive from corresponding Maxwell equations
integrable system of two coupled equations.

Let the three-component field propagate in on
dimensional medium

Ē~x,t !5(
j 51

3

$Pj exp@ i ~qjx2v j t !#1c.c.%, ~3.1!

here Pj is the slow changing envelope,v j is the carrying
frequencies andqj is the carrying wave vectors, respective
It is assumed that the resonance conditions are the follow

v11d1v25v01n, v31d2v15v01n, ~3.2!

here, v0 is the frequency of transition and the frequen
mismatchn satisfiesn!v i , j 5023; d1,2561.

The resonance conditions~3.2! not only allow the nonlin-
ear mixing effect to enhanced considerably~by order of mag-
nitude!, but also permit us to drop the terms in the equat
that describes the cubic self interaction of the fields. This
also what allows the ISTM to be employed in the model. T
processes of nonlinear mixing is determined by the tw
photon induced Kerr-type nonlinearity@10–12#.

The standard assumption is that the time scale of the n
linear processes and mismatch is such that one may ne
the relaxation and adiabatically eliminate the polarization
medium from evolution equations. Substituting this in t
Maxwell equations, one obtains an equation that in the ro
ing wave and slow changing envelopes approximations
reduced to the following system:

~]x1v1
21] t!P15 i

4pv1

c2
@assP1uP2u21aasP1uP3u2

1apaP2P1* P3 exp~2 iDx!#,

~]x1v2
21] t!P25 i

4pv2

c2
@assP2uP1u2

1asaP1
2P3* exp~ iDx!#, ~3.3!

~]x1v3
21] t!P35 i

4pv3

c2
@aaaP3uP1u2

1asaP2* P1
2 exp~ iDz!#.

Here we used the resonance conditions~3.2! for d15d25
21. Coefficientsaas , etc. are the same as in Ref.@13#,
Chapter V. Equations~3.3! differ from that of Ref.@13# in
05661
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that we neglected the relaxation processes, took into acc
time dependence of the fields envelopes, and used the
amplitude approximation.D52q12q22q3 , D is the wave
vectors mismatch.v i are the phase velocities of the field
having the envelopesPi , respectively. For other choices o
d i , close equations can be derived.

In the majority of experiments on the observation
many-wave mixing that are familiar to us, one or more of t
fields can be taken to be constant to a good approxima
@12#. This condition also substantially reduces the difficu
in synchronizing the field pulses, required for the effect to
observable. The constancy of one of the fields is ensu
e.g., in the limituP2u!uP3u. Let P3(x,t)[A5const., there-
fore we withdraw the last equation from system~3.3!. Under
above approximations we reduce Eq.~3.3! to the system

]tq1522q1* q21 inq1 , ~3.4!

]zq25q1
22 i2g2q2uq1u2, ~3.5!

where

P15q1 expF2 i
D

2
x1 ig1E

0

tUq2U2dtG ,
P25 iq2 expF ig1E

0

tUq2U2dtG ,
g252

1

2 S ass

asaA
1

1

2
g1D , g15

ass

apaA
,

n5
c2D

8pv1apa
1

aas

apa
uAu2,

]t5
c2

4papav1
S ]

]x
1

1

v1

]

]t D ]z5
c2

4pasav2
S ]

]x
1

1

v2

]

]t D .

System~3.4, 3.5! is the new integrable system of equ
tions having an application in nonlinear interaction of wav
in the resonant medium. Although this model is relative
the one obtained by the author in Ref.@11#, the above system
~3.4, 3.5! poses as mathematical as physical features
distinguish it from known models.

B. Compound model

In experimental setup, light pulses pass as usual thro
different nonlinear and linear media. Let a light pulseE in-
teract with two auxiliary fieldsG,U in the media placed in
@z1 ,z2# by the same way as described above. In the ab
notations,E[P2 , G[P35const.,U[P1. The second non-
linear medium extended in the interval@z2 ,`) is an optical
fiber. The field evolution in fiber is described by th
MNLSE. Then the compound model is the following:

]xE1u~z2z2!@ iD ] tt
2E1ãuEu2E1b̃] t~ uEu2E!#

5@u~z!u~z22z!#~22g̃1U 2G12i g̃1
2EuUu2!, ~3.6!
2-4
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@u~z!u~z22z!#~] tU2g̃2EU* 12i g̃2
2UuEu21 i ñU!50.

~3.7!

Hereu(z) is the step function. Physical meaning of the c
efficients can be found in@1#.

The differentiated cubic nonlinearity in the left-hand si
of Eq. ~3.6! arises, then the time duration of pulses becom
compatible with the carrying frequency of the light field. Th
terms;g̃1,2

2 arise as the main third-order terms.
Interactions of the fields in the resonant and Kerr me

are spatially separated. Therefore, these interactions ca
associated with the different scales. For instance, interac
in fibers can be considered as nonlinear for distance tha
much more than that of resonant medium. AmplitudeG can
be taken as a constant for large enoughuGu.

Let

zg̃2
2UuEu2u!uñUu. ~3.8!

After substitutions,

E5 r̃Q exp~22i ñt !, U5 d̃U exp~2 i ñt !, t5k̃t,
~3.9!

the system~3.6, 3.7! can be transformed to the followin
form:

]zQ2a2,3$]tt
2 Q22i ~ uQu22uQ6u2!Q1g2]t@~ uQu2

2uQ6u2!Q#%5a1,2~2U212ig2QuUu2!, ~3.10!

a1,2~]tU1hQU* !50, ~3.11!

where

]

]z
5

1

z0
S ]

]x
1

1

v0

]

]t D , r̃5A 2z0

ã12ñ
, k̃5AD

z0
,

1

v0
5

4b̃D ñ2

ã12ñ
2D ñ, d̃25

A2z0

g̃1GAã12ñ
,

z05
g̃1

2Aã12ñ

b̃A2Dg1G
, ~3.12!

uQ6u25
2D ñ2

z0
, g25

2b̃Az0

AD~ ã12ñ !
, a 1̃~z![ã2~z![1.

Applicability of the ISTM to Eqs.~3.10, 3.11! requires that
the following condition must be fulfilled

h5
g̃2GA2D

Aã12ñ
51. ~3.13!

Condition ~3.13! can be satisfied by choosing mismatchñ
and ~or! by choosing the amplitudeG. Q6 in Eqs. ~3.10,
3.11! are determined with an accuracy to the transformz
05661
-

s

a
be
n
is

→z̃5z1(12f2)t/g2, Q→Q̃5Q exp@22i(12f2)z#, U→Ũ

5U exp@2i(12f2)z#, which yields the transformQ6→Q̃6

5 f Q6.

IV. THE ISTM APPLICATION

To demonstrate integrability of the new model by usi
the ISTM we present the Lax pair of this model, which exis
for any real meaning of the physical coefficients before
terms in Eqs.~3.4, 3.5!. The Lax pair is

]tF5S ~2 ih21 in! 2~12 igh!q2

2~11 igh!q̄2 ~ ih22 in!
D F, ~4.1!

]zF5
i

h2 S 2~11g2h2!F3 2~12 igh!F1

~11 igh!F2 ~11g2h2!F3
DF,

~4.2!

hereF35uq1u2, F15q1
2, F25q̄1

2, h is the spectral param
eter,F(t,z;l) is the matrix-valued function.

But here we will investigate the compound model~3.10,
3.11!. Lax pair for this model is the following:

]tF5S 2 il22 ig22 lq

lq̄ il21 ig22D F[L1F, t>0;

~4.3!

]zF5
ia1,2~z!lg3

l2g211
S lguUu2 iU 2

iŪ 2 2lguUu2D F1a2,3~z!

3S 2 iH 11 H12

H21 iH 11
DF[AF, ~4.4!

here, l is the spectral parameter,q5Q/( ig), q6

5Q6/( ig);

H115@2~l21g22!22uq6u2~2l21g22!2l2uqu2#,

H125l@2q~l21g222uq6u2!1 i ]tq2uqu2q#, ~4.5!

H215l@2q̄~l21g222uq6u2!2 i ]tq̄2uqu2q̄#.

This system possesses the new distinguished proper
which are interesting both for theoretical study and for a
plication in nonlinear optics.

The ISTM formalism used here is based on the RH pr
lem associated with the Wadati-Konno-Ichikawa~4.3! @14#
linear spectral problem. Below we describe the Riema
Hilbert problem formulation following to Refs.@15,16#. Dif-
ferences are in choosing of the semi-line problem instead
the full axis spectral problem as in Refs.@15,16# and respec-
tive alteration of the Jost functions. Therefore, we descr
here the Riemann-Hilbert problem without proof.

For functionq(t,z) of t and all its derivatives decreas
faster than any positive degrees oft, t→`, define the vector
functionsc6(t,z;l) andf6(t,z;l) as the Jost solutions o
2-5
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the first equation of system@]t2L1(t,z;l)#c6(t,z;l)50
and @]t2L1(t,z;l)#f6(t,z;l)50, with the following
asymptotic,

lim
t→1`

c1~t,z;l!5~0,1!TeiL2t,

lim
t→1`

c2~t,z;l!5~1,0!Te2 iL2t, ~4.6!

f1~0,z;l!5~1,0!T, f2~0,z;l!5~0,21!T, ~4.7!

whereL25l21g22, the superscripts6 mean Im(l2)
.

,
0,

and T denotes transposition. From the Cauchy theorem
lows that condition~4.7! fulfills ; t,0.

The Jost solutions have the following properties:

c6~t,z;l!57a6~z;l!f7~t,z;l!

1b7~z;l!f6~t,z;l!, Im~l2!50,

~4.8!

wherea6(l) analytically expandable in Im(l2)
.

,
0 and for

l→`, Im(l2).0, a1(l)511O(l22), for Im(l2)50,

a1(l)a2(l)1b1(l)b2(l)51, a1(l)5a2(l̄ )̄ , b1(l)5

2b2(l̄ )̄ , a6(2l)5a6(l), b6(l)52b6(2l), and
r6(l)5b6(l)/a6(l), and Ĝ5$l;Im(l2)50% is the con-
tour oriented as in Fig. 1;

c1~t,z;l!e2 iL2t5S q~t,z!

2l
,1D T

1O~l22!,

f1~t,z;l!eiL2t5S 1,
q̄~t,z!

2l
D T

1O~l22!,

and, forl→`, Im(l2),0, a2(z;l)511O(l22),

c2~t,z;l!eiL2t5S 1,
q̄~t,z!

2l
D T

1O~l22!,

f2~t,z;l!e2 iL2t52S q~t,z!

2l
,1D T

1O~l22!.

FIG. 1. Continuous spectrumĜ:$l,Im l250% and contours of
integrationG6 .
05661
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Let c(t,z;l)[m(t,z;l)exp(2iL2ts3). Define Im(l2)
.0,

m1~t,z;l![S f1
1~t,z;l!

a1~z;l!
c1

1~t,z;l!

f2
1~t,z;l!

a1~z;l!
c2

1~t,z;l!
D exp~ iL2ts3!;

for Im(l2),0,

m2~t,z;l![S c1
2~t,z;l! 2

f1
2~t,z;l!

a2~z;l!

c2
2~t,z;l! 2

f2
2~t,z;l!

a2~z;l!

D exp~ iL2ts3!;

and r(l)[r2(l). Then 232 matrix function
m(t,z;l) @det$m(t,z;l)%51# solves the following
Riemann-Hilbert problem:

~1! m(t,z;l) is holomorphic; lPC2Ĝ.
~2! m(t,z;l) satisfies the following jump conditions:

m1~t,z;l!5m2~t,z;l!E~t;l!21G~l!E~t;l!, lPĜ,
~4.9!

where

G~l!5S 12r~l̄ !r~l! r~l!

2r~l̄ ! 1
D ,

E~t;l!5exp~2 iL2ts3!,

r(l)PS(Ĝ), andr(2l)52r(l).
~3! For l→`, lPC2Ĝ,

m~t,z;l!5I1O~l21!.

Above properties follow from definition ofm(t,z;l) for

Im(l2)
.

,
0 and analytical properties of the Jost functions

Let uuruuL `(Ĝ)[suplPĜur(l)u,1, @17,18#. Then: ~i! the
RH problem is uniquely solvable; ~ii ! c(t,z;l)
[m(t,z;l)exp(2iL2ts3) is the solution of system~4.3,4.4!;

q~t,z![2i lim
l→`

@lm~t,z;l!#12

and

q̄~t,z![22i lim
l→`

@lm~t,z;l!#21; ~4.10!

and m(t,z;l) possesses the following symmetry r
ductions, m(t,z;2l)5s3m(t,z;l)s3 and m(t,z;l)

5s1m(t,z;l̄)s1.
2-6
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The solvability of the RH problem; z follows from the
conditionuuruuL `(Ĝ),1, see details in Refs.@16–19#. Condi-
tion ~ii ! follows from Eq. ~4.3! and decomposition onl21,
l→`.

For a(l)Þ0, assuming thata(l)Þ0, the first vector of
the above equation implies~taking the complex conjugat
and the plus projection! the integral equations

c̄1
1~t,z;l!5S 0

1D 1
1

2ipEG1

r̄~z;l!e2i tY2
c̄2

2~t,z;l!
dz

z2l
,

~4.11!

c̄2
2~t,z;l!5S 1

0D
1

1

2ipEG2

r~z;l!e22i tY2
c̄1

1~t,z;l!
dz

z2l
.

~4.12!

Here,Y25z21g22. ContoursG6 oriented as in Fig. 1 in-
clude the paths along the axis and arcs in infinity. The f
mulas~4.11, 4.12! taking into account~4.10! and dependence
r5b̄/a, r̄5b/a on z, furnish the solution of the invers
problem.

V. QUASIRADIATION SOLUTION TO THE
COMPOUND MODEL

In this section we show that a quasiradiation solution
system~3.10, 3.11! for the field Q(t,z) is generated by a
simple ‘‘boundary’’ (t50) conditions for the auxiliary field
U.

Impose the following initial-boundary conditions:

Q~t,0!50, t>0, Q~0,z!50, ; z;

U~z,0!5U05const.Þ0, zP@0,z2#; U~z,0!50,

z.z2 . ~5.1!

It can be shown that a trivial solutionQ(t,z)[0 to Eq.
~3.10! for z.z2 is linearly stable. This fact and condition
~5.1! justify the following assumption:Q(t,z)50, t→`;
; z.

From the symmetry properties of spectral problem~4.3!
follows that matrixT has the form
05661
-

o

T~l!5S a~l! b̄~l!

b~l! ā~l!
D . ~5.2!

We search for the solution of Eq.~2.7! for 232 matrix
A(0,z;l): detA(0,z;l)Þ0, ; z, which is constant within
intervals A1(0,z;l)[A1(0,0;l), zP@0,z2#; A2(0,z;l)
[A2(0,̀ ;l), z.z2 . ã i(z)[1,i 51,2. A(0,z;l) changes
stepwise in the pointz5z2. For the initial-boundary condi-
tions ~5.1! this solution; z.0 is

a~z;l!5
a0

2V
$@~V1Ã11!1er0Ã21#e

2[zV1Q(z)]

1@~V2Ã11!2er0Ã21#e
[zV2Q(z)]%, ~5.3!

b̄~z;l!5
a0

2V
$@~V2Ã11!r01eÃ12#e

2[zV1Q(z)]

1@~V1Ã11!r02eÃ12#e
[zV2Q(z)]%, ~5.4!

where Ãi j is the element of the matrix Ã

5F0
21(l)A(0,0;l)F0(l)5Ã(0,0;l), Q(z;l)

5*0
zÃ11

1 (s;l)ds, Ã11
1 (z;l)

5 limt→`@F1
21(l)A(t,z;l)F1(l)#115 limt→`A11(t,z;l),

V25Ã11
2 (0,z;l)1Ã12(0,z;l)Ã21(0,z;l), r0(l)5r(z50,l)

5b̄0 /a0.
The coefficientr(z;l) is

r~z;l!5
b̄

a

5
@~V2Ã11!r01eÃ12#e

22Vz1@~V1Ã11!r02eÃ12#

@~V1Ã11!1er0Ã21#e
22Vz1@~V2Ã11!2er0Ã21#

.

~5.5!

Coefficientr0(l) is determined by a solution of the spectr
problem~4.3! for a fixed potentialq(t,0).

The matrixT ; z is
T~z;l!5s0S Fcoth~Vt!2
Ã11

V
1r0

Ã21

V
GeiQ H 2

Ã12

V
1r0Fcoth~Vt!1

Ã11

V
G J eiQ

H r̄0Fcoth~Vt!2
Ã11

V
G2

Ã21

V
J e2 iQ H Fcoth~Vt!1

Ã11

V
G2 r̄0

Ã12

V
J e2 iQ

D , ~5.6!
2-7
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wheres05a0sinh(Vt),

V5
i

L2
$a1,2~z!@~12g2L2!uU0u21a2,3~z!2L6#22a1,2~z!

3~12g2L2!uU0u4%1/2,

Ã115A1152a1,2~z!i uU0u2
12g2L2

L2
22a2,3~z!iL4,

L25l21g22, a ĩ(z)[1. Expression forÃ12 (Ã21) will not
be used below and we omit it.

Taking into account thatA5a1,2(z)A11a2,3(z)A25A2
for z.z2 and using Eq.~5.6!, it can easily shown that fo
conditions~5.1! the following relation is fulfilled

T~z;l!5T1~z2 ,z!T~z2 ;l!T1
21~z2 ,z!, z.z2 , ~5.7!

here T1(z2 ,z) is the formal solution to the linear syste
~4.4! for zero nondiagonal elements of matrixA(t2 ,z;l)

T1~z2 ,z;l!5e2 i2s3L4z, z.z2 . ~5.8!

From Eq.~5.7! follows

a~z,l!5a2e2Q, b̄~z,l!5b̄2e(4iL4z2Q), ~5.9!

herea2 , b̄2 are the elements of matrixT(0,z2 ,l).
To solve Eqs.~4.11, 4.12! one must findr(z;l) and the

zeros ofa(l). Poles position in complex plane is derive
from the equationT11(z;l)5a(z;l)50, i.e.,

a0Fcoth~Vt!2
Ã11

V
G1b̄0

Ã21

V
50. ~5.10!

From conditionq(t,0)[0, it follows thatb0(z;l)50. Then
the poles are determined by the equation

coth~Vz!2
Ã11

Vu
50. ~5.11!

For z5z2 we get can rewrite Eq.~5.11! in the form
l

05661
coth~ izL0!5z, ~5.12!

here, z56Ag2L221/gL, L05z2uU0u2g2. This equation
has a set of solutionsz(n), n is an integer, which satisfy to

z~n!L01 i ln
z~n!11

z~n!21
5

pn

L0
. ~5.13!

Numerical solution to Eq.~5.13! is depicted in Fig. 2. We
reveal numerically that forL0!1 Imz(n) tends to nonzero
constant asn→`. If L0@1, then one can reckon

Im z~n!50, Rez~n!5np/L0 , n50,61,62,63, . . . ,
~5.14!

with an accuracyO„1/(L0logL0)….
Solutions to~4.11, 4.12! for zP@0,z2# describe the fields

dynamics in the resonant medium, where the dependenr
on z yields an infinite number of poles~5.13!. For z.z2
~optical fiber! the dependence ofr on z becomes simple

r~z;l!5r~z2!e4i (l21g22)2z5r~z2!e4iL4z. ~5.15!

Therefore to solve Eqs.~4.11, 4.12! we have to calculate al
residues inln :ln

25g22z2(n)@12z2(n)#21 in the right-
hand side~RHS! of equation~4.11!,

FIG. 2. Dependence of the imaginary and the real parts ofz on
n. Figs. ~a,b! are depicted forL050.01, Figs.~c,d! correspond to
L0550.
F1~t,z2 ;j!5 (
n52`

`
e2 iLn

2t14iLn
4zu(z2z2)

j2ln
•

c1~ln!1c2~ln!e2iLV(ln)

c4~ln!e2iLV(ln)2iLV8~ln!
c2~t;ln!, ~5.16!
ur-

ge

-

here V8(ln)5 liml→ln
]/]lV(l). e2iLV(ln)5

2c3(ln)/c4(ln). Ln
25ln

21g22. Coefficientsci , i 5124
for b0(z;l)50 are: c1(l)5eA1252c2(l), c3(l)5V
1A11, c4(l)5V2A11, see, Eq.~5.5!. In Eq. ~5.16! the
matrix elementsAi j (z)[Ai j (0) are taken in the interva
@0,z2#. The first multipliers of the terms of sum~5.16! are
associated with the evolution onz within interval the@z2 ,`).
The second multipliers of such a term originate fromz de-
pendence of scattering data within the first interval@0,z2#
and therefore are associated with the evolution of fields d
ing the wave mixing in the resonant medium.

Below we restrict our investigation to the case of lar
effective length of the resonant medium, i.e.,L0@1. Let us
substituteln in Eq. ~5.16! and use Eq.~5.14!. For L0@1
coefficients in the sum~5.16! change smoothly and differ
ence between the elements of sum tends to zero forL0→`.
2-8



tio

:

o
um

ar
in-
ght
they
om-
M.
tion
by

de-
he

red
ary
ted
lts
he
od-

da-

QUASIRADIATION SOLUTION TO THE COMPOUND . . . PHYSICAL REVIEW E63 056612
These statements justify the transformation from summa
in Eq. ~5.16! over n to integration with respect tom
5np/L0

F1~t,z;j!5E
G1

e2iX2t14iX4zu(z2z2)

j2l

c1~t;m!gmdm

p~12m2!3

5
g3

2pEG1

e2iX2t14iX4zu(z2z2)

j2x
c1~t;x!dX2;

~5.17!

whereX25g22(12m2)221g225x21g22. Then we com-
pute the integral in the RHS of Eq.~4.12! by the same way.

As a result, we obtain the following integral equations

c̄1
1~t,y;l!5S 0

1D
1

1

2ipEG1

r̄e f f~x!e2i tX214iyX4
c̄2

2~t,y;x!
dx

l2x
,

~5.18!

c̄2
2~t,y;l!

5S 1

0D 1
1

2ipEG2

re f f~x!e22i tX224iyX4
c̄1

1~t,y;x!
dx

l2x
,

~5.19!

here,re f f(x)52i g3x, X25x21g22, y5z2z2.0.
Systems~5.18! and~5.19! describe a radiation solution t

the MNLSE associated with the continuous spectr
Ĝ:Im l250 and the effective coefficientre f f .

An asymptotic solution to Eqs.~5.18! and ~5.19! may be
derived by using sophisticated techniques, developed
Refs.@15,18,19#.
g

P.

D

.

05661
n

in

Let us find a solution for a smallt. Using Eq.~4.10!, we
find for (c̄1

1)2'1, (c̄2
2)2'0,

q~t,y!'
eAig3

2pA2y
e

i t2

8yFD21S Ai t

A2y
D 1D21S 2

Ai t

A2y
D G ,

y5z2z2.0, ~5.20!

hereD21(y) is the function of the parabolic cylinder@20#.

VI. CONCLUSION

Application of compound integrable models in nonline
optics is conditioned by the fact that experimental setup
cludes different linear and nonlinear media as usual. Li
pulses can be amplified, squeezed, and deformed while
propagate through these media. From another side the c
pound models extend the region of application of the IST

It have been shown in this paper that the quasiradia
solution to the MNLSE in one medium can be generated
the simple boundary conditions~at t50) for the field inter-
acting in an another medium. Analogous results can be
rived for a more simple case of the model including t
Maxwell-Bloch model and the nonlinear Schro¨dinger equa-
tion ~NSE! compounded by the same way as conside
here. It can be shown that for analogous initial-bound
conditions a quasiradiation solution to the NSE is genera
by the nonzero initial polarization of medium. These resu
indicate that asymptotic behavior of the solution found in t
present paper is expected to occur in other compound m
els.

ACKNOWLEDGMENT

This work was supported in part by the Russian Foun
tion for Basic Research, Grant No. 98-02-17904.
al

bl.

.
h

@1# Y. Kodama, J. Stat. Phys.39, 597 ~1985!; Y. Kodama and A.
Hasegawa, IEEE J. Quantum Electron.23, 510 ~1987!; G.P.
Agrawal, Nonlinear Fiber Optics ~Academic, New York,
1989!; Optical Solitons—Theory and Experiment, edited by J.
R. Taylor, Cambridge Studies in Modern Optics~Cambridge
University, Cambridge, 1992!, Vol. 10; H.A. Haus, Proc. IEEE
81, 970~1993!; A. Hasegawa and Y. Kodama,Solitons in Op-
tical Communications, Oxford Series in Optical and Imagin
Sciences, No. 7~Oxford University, Oxford, 1995!.

@2# V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L.
Pitaevsky,Soliton Theory~Plenum, New York, 1984!.

@3# D. J. Kaup, Physica D6, 143 ~1983!; D. J. Kaup, J. Math.
Phys.25, 277 ~1984!; D. J. Kaup and P. J. Hansen, Physica
18, 77 ~1986!; D. J. Kaup, Inverse Probl.2, 423 ~1987!.

@4# I. R. Gabitov, V. E. Zakharov, and A. V. Mikhailov, Teor
Mat. Fiz. 63, 11 ~1985! @ Theor. Math. Phys.63, 328 ~1985!#.

@5# I. T. Khabibullin, Teor. Mat. Fiz.86, 43 ~1991! @ Theor. Math.
Phys.86, 28 ~1991!#.
@6# E. K. Skljanin, Funct. Anal. Appl.21, 86 ~1987!; A. S. Fokas
and A. R. Its, SIAM J. Math. Anal.27, 738 ~1996!; A. S.
Fokas and A. R. Its, Phys. Rev. Lett.68, 3117 ~1992!; E. D.
Belokos,Algebraic and Geometrical Methods in Mathematic
Physics~Kluwer, Amsterdam, 1996!, p. 263.

@7# A. S. Fokas and C. R. Menyuk, J. Nonlinear Sci.9, 1 ~1999!.
@8# J. Leon and A. V. Mikhailov, Phys. Lett. A53, 33 ~1999!; M.

Boiti, J.-G. Caputo, J. Leon, and F. Pempinelli, Inverse Pro
16, 303 ~2000!.

@9# A. Fokas, J. Math. Phys.41, 4188~2000!.
@10# V. E. Zakharov and A. V. Mikhailov, Pis’ma Zh. E´ksp. Teor.

Fiz. 45, 279 ~1987! @JETP Lett.45, 349 ~1987!#.
@11# A. A. Zabolotskii, Phys. Lett. A124, 500 ~1987!.
@12# V. S. Butylkin, A. E. Kaplan, Yu. G. Khonopulo, and E. J

Yakubovich, Resonant Nonlinear Interaction of Light wit
Matter ~Springer, New York, 1989!.

@13# Y. R. Shen,The Principles of Nonlinear Optics~Wiley, New
York, 1984!.
2-9



h.

ALEXANDER A. ZABOLOTSKII PHYSICAL REVIEW E 63 056612
@14# M. Wadati, K. Konno, and Y. Ichikawa, J. Phys. Soc. Jpn.46,
1965~1979!; D. J. Kaup and A. C. Newell, J. Math. Phys.19,
798~1978!; H. Eichhorn, Inverse Probl.1, 193~1985!; J. H. B.
Nijhof and G. H. M. Roelofs, J. Phys. A25, 2403~1992!.

@15# X. Zhou, J. Diff. Eqns.115, 277 ~1995!.
@16# A. V. Kitaev and A. H. Vartanian, Inverse Probl.13, 1311

~1997!.
05661
@17# V. S. Gerdzhikov, M. I. Ivanov, and P. P. Kulish, Theor. Mat
Phys.44, 784 ~1980!.

@18# J.-H. Lee, Trans. Am. Math. Soc.314, 107 ~1989!.
@19# X. Zhou, Commun. Pure Appl. Math.42, 895~1989!; X. Zhou,

SIAM ~Soc. Ind. Appl. Math.! J. Math. Anal.20, 966 ~1989!.
@20# H. Bateman and A. Erde´lyi, Higher Transcendental Functions,

Vol. II ~McGraw-Hill, New York, 1953!.
2-10


